If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5v^2+35v+60=0
a = 5; b = 35; c = +60;
Δ = b2-4ac
Δ = 352-4·5·60
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-5}{2*5}=\frac{-40}{10} =-4 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+5}{2*5}=\frac{-30}{10} =-3 $
| 4.1+(-1.91)=p | | 3x+11=x+21=180 | | 2(x)+3=1+2.28171817154/7 | | 35b^2-80=-120b | | 8x-17=6x+35 | | 7(x-5)=99999999999999999999999999999999999999999999999 | | 2^x=512 | | x=75/5*30 | | (5x+2)(x-6)=180 | | 5a-4=3a+7 | | 10x+60=4x | | 5x-10=-4x-146/11 | | x+17+x+77=180 | | x=-3-2=9 | | 3x+4=141 | | 45+.50x=2x | | -x+5=29+× | | 4x+9=64 | | 4x-10=5(x+2)-5 | | -4x+1=7-x | | -3/5s=40 | | 3/4T5/6=2/3t | | 1/8+2x=-18 | | 2^z=2^3 | | 3(x+8)=19 | | 5r-15=5r-30 | | 21-2x=12x-45 | | 5(5x+3)-(5x+15)=0 | | x^-30x-22=-211 | | 6n+19-A= | | n/9=6/27 | | 27=6.5z+14 |